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Transverse Stress Decay in a Specially Orthotropic

Strip under Localized Normal Edge Loading

W. B. FICHTER

NASA Langley Research Center, Hampton, Virginia, USA

ABSTRACT

Solutions are presented for the stresses in a specially orthotropic infinite strip which

is subjected to localized uniform normal loading on one edge while the other edge is
either restrained against normal displacement only, or completely fixed. The solutions

are used to investigate the diffusion of load into the strip and in particular the decay

of normal stress across the width of the strip. For orthotropic strips representative of a

broad range of balanced and symmetric angle-ply composite laminates, minimum strip
widths are found that ensure at least 90% decay of the normal stress across the strip. In

addition, in a few cases where, on the fixed edge the peak shear stress exceeds the normal

stress in magnitude, minimum strip widths that ensure 90% decay of both stresses are

found.

To help in putting these results into perspective, and to illustrate the influence of

material properties on load diffusion in orthotropic materials, closed-form solutions for
the stresses in similarly loaded orthotropic half-planes are obtained. These solutions

are used to generate illustrative stress contour plots for several representative laminates.

Among the laminates, those composed of intermediate-angle plies, i.e., from about 30_"
to 60 ° , exhibit marked changes in normal stress contour shape with stress level.

The stress contours are also used to find 90% decay distances in the half-planes.

In all cases, the minimum strip widths for 90% decay of the normal stress exceed the

90% decay distances in the corresponding half-planes, in amounts ranging from only

a few percent to about 50% of the half-plane decay distances. The 90% decay dis-

tances depend on both material properties and the boundary conditions on the supported

edge.

The widespread and growing use of composite materials in recent years has prompted

increased interest in analysis of the stresses and deformations in elastic anisotropic materials.

As a result, it is well known that stress decay rates in anisotropic elastic bodies can differ

markedly from those in similarly loaded isotropic bodies. (See, for example, [1] and [2],

where numerous studies are cited.) Many of the cited studies have focused on questions

concerning the applicability of St. Venant's principle to anisotropic bodies, particularly

elastic strips that are loaded in the longitudinal direction. One finding of such investigations

is that the distance over which end effects in axially loaded anisotropic strips diffuse and

decay to insignificant levels can differ by an order of magnitude or more from that in

an isotropic strip, a result which has obvious implications in the determination of elastic

properties of composite materials from laboratory tests of small specimens. In [3], solutions

were found for the stresses in a specially orthotropic half-plane subjected to localized
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NOMENCLATURE

coefficients in solution to u, v in-plane displacements

transformed governing x, v rectangular Cartesian
+ coordinates

equation
elastic constants for ya 90% decay distance for

cr,. in the half-plane
orthotropic materials characteristic root of
dimensionless width y

transformed
of strip

ha minimum strip width governing equation
required to ensure _4, _ v. x_,. elastic strains
90% decay of _r,. _ Fourier transformation

+ variable
characteristic parameters elastic stresses

p magnitude of applied cry, _,. "r_,
normal traction tO(x. y) Airy stress function

Subscripts C and S indicate Fourier sine and cosine transforms, respectively.

...... .a t ;

. . __',-_

self-equilibrated edge loading, and a simple approximate formula was found for a lower

bound on the normalized 90% decay distance for the normal stress.

There are practical concerns as well for the decay of stresses across the width of elastic

strips. Many modem aircraft and spacecraft structural components are laminated composite

panels which, for many purposes of structural analysis, can be modeled as orthotropic strips.

It is of interest to designers of such components to know, for example, how loads applied to

one edge of an orthotropic strip are reacted at the other edge or, more specifically, how wide

a particular strip must be to ensure that the reaction stresses at all points on the supported

edge are no more than a specified fraction of the applied loads.

Making this type of information available to designers is the primary purpose of this

article. A specially orthotropic (principal axes of orthotropy aligned with coordinate axes)

elastic strip is subjected to localized uniform normal loading on one edge, while the opposite

edge is either restrained against normal displacement only, or completely fixed. For both

edge-support modes, expressions are found for the stresses at all points in the strip. Extensive

numerical results for the stresses along the opposite edge of the strip are presented for a

broad range of symmetric angle-ply laminates. To aid in putting these results in perspective,

solutions are also presented for the similarly loaded and supported isotropic strip and the

similarly loaded specially orthotropic and isotropic half-planes.

ANALYSIS

The specially orthotropic strip studied here is defined by -oc < x < oc, 0 < 3' -< h.

The engineering constants are E_, E,., Gx,., rlxv, and rlyx, where E_ t,,._ = Eyvxy. For plane

stress conditions the stresses, strains, anddispiacements are related by

o.x (3-v O'y O'x

'l'xy

Yx>' = rl.y + v._ =

The stresses are defined in terms of the Airy stress function by

CY_= qg.yy CY_._- qg xx "r._v ---_--tp._v
{2)
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where the comma followed by a subscript indicates partial differentiation with respect to the

subscript variable. Thus, the plane-stress equilibrium equations are satisfied automatically,

and the compatibility equation can be written as

) =0E---_yqLxxxx+ - 2rlxy q2,xxyy "_ q_.yyyy

(3)

Two boundary-value problems for the specially orthotropic strip, referred to herein

as problems A and B, are analyzed here. In both problems, uniform normal traction of

magnitude p is applied to the free edge y = 0 over an interval of length 2, which, for

simplicity, is centered on the y axis. (Note that the stresses in all the solutions presented
here can be easily converted to solutions for applied traction over an interval of length

2a by substituting x/a and y/a for x and y.) In problem A, the edge y = h is par-

tially fixed, i.e., the shear stress "rxv and normal displacement v are set equal to zero.

In problem B, the edge y = h is completely fixed, i.e., both the normal and tangential

displacements, u and v, are set equal to zero. The solution to problem A is presented

first.

Problem A--Partially fixed upper edge

The boundary conditions are

"rxy(X, 0) = 0 (4)

_(x, 0) = Ixl > 1

"r,_.(x, h) = 0 (6)

v(x, h) = 0 (7)

The unbounded domain and the discontinuous edge loading suggest a Fourier transform

approach. The Fourier cosine and sine transforms are defined by

qo(x, y) cos L_cdx

q0(x, y) sin Xx dx

or

(8)

and inversely,

q)(x, y) = q_c(M Y) cos Xx d)k

5;yoqg(x, y) = q)s(7_, y) sin Xx dX

or

(9)
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In terms of the transformed stress function, the transformed stresses and displacements

• _)_2(_xC = (pC, yy (_vC : (PC _tyS : )k(PC, y

us=(_-_--E_)(pC.y_,+(_)Xtgc and

UC = (pC,yyy + \ E,, G¢v (Pc,_

(10)

which anticipate obvious symmetries about the v axis in both problems. Application of the

appropriate transforms to the governing equations yields

(PC vyyy -- -- 2rlxy )k'(PC.yy 4- )k4 (PC = 0 (11)

along with

qgC.y()_, O) = 0

/5-fsinX 
(Pc(X,o)= = -s(x)

qOc.y(X, h) = 0

and

(Pc.>.>.>.(Xh)-(E_y

which in view of Eq. (14) simplifies to

-- - vxy )_-(PC.y(YL h) = 0

(12)

(13)

(14)

qgC,yyy()_, h) = 0 (15)

When the solution to Eq. (11) is assumed to have the form (Pc = F(X)e ?'Y>',the following
characteristic equation is obtained:

y4_ Ex _2rlxy y-+ =0 (16)

With the definitions 2r = (E,/Gxy - 2flay), k 4 = E./Ey, Eq. (16) becomes

y4 _ 2ry_, +k 4 = 0 (17)

The form of the solution for (Pc(_, y) depends on the nature of the characteristic

roots, which depends on the material constants through the parameters r and k, as seen

in Eq. (17). With the physically meaningless special cases disregarded, the three material
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types of engineering interest are:

Typel: 0 < k z < r. Letq = _/r 2-E_/Ev,andkt = C7-_+ k2 = x/F-q. Then
y = 4-kl, +k2 (real, distinct).

Type H: 0 < k z = r. Then 3] = +k, +k (real, repeated).

Type Ill: 0 < [r[ < k 2. Let kl = _/(k z + r)/2, k 2 = _/(k 2 - r)/2. Then y = +(kl + ik2)
(equal and opposite conjugate pairs).

Most balanced and symmetric angle-ply laminates are of type I or type III. However, one

type II material of great practical interest is the isotropic (or quasi-isotropic) material. The

isotropic solution can be found from a type ! or type III solution through an appropriate
limiting process, as well as by dealing directly with the isotropic formulation.

Solution for type I material
The transformed stress function has the form

qOc(?_, y) = A(7_)coshAkly + B(A)sinh?_kly + C(?Ocosh?xk2y + D(_)sinhAk2y (18)

Substitution of Eq. (18) into the transformed boundary conditions, Eqs. (12)-(15), leads to
simultaneous algebraic equations to be solved for A, B, C, and D, which are then substituted

into Eq. (18) to completely define qac(_, y). Then the use of Eqs. (8)-(10) gives for the
stresses at any point in the strip,

f0 _
Crx= (2p/Tr)ktk2 [kl sinh ?_k2h cosh ?_kl(h - y)

- k2 sinh ?,kl h cosh _k2(h - y)] sin ?_cos L,c dA/A

_y = (2p/Jr) [kl sinh _klh cosh_k2(h - y)

- k2 sinh _k2h cosh _kl (h - y)] sin _ cos Xx d2_/A

/Y"rxy = (2p/_r)ktk2 [sinh;_klh sinh_kz(h - y)

- sinh _k2h sinh Xkt(h - y)] sin 3, sin _ dX/A

(19)

(20)

(21)

where

A = )_(ka sinh )_klh cosh ?xk2h - k2 cosh )kkl h sinh _k2h ) (22)

On the supported edge y = h, the nonzero stresses are

fo "2°
crx(x, h) = 2(k_ +kz)p/rc [kt sinh?_k2h - k2 sinh)_k,hisin)_coshxd;_/A (23)

_y(x h) = (2p/_) [kt sinh _,klh - k2 sinh J_k2hl sin Xcos 2_xd_/2_A (24)

Solution for type III material

With the characteristic-value definitions y = kl + ik2 and _/ = kl -- ik2 for type III
materials, the transformed stress function has the form

q_c(_, y) = A(X)cosh Xyy + B(]N) sinh )_yy + C(A)coshM_y + D(_) sinh A_y (25)

'+7_"'- - +. +-
+ ..
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Satisfaction of the transformed boundary conditions, Eqs. (12)-(15), and the subsequent

use of Eqs. (25) and (8)-(10), yields the following expressions for the stresses at any point
in the strip:

where

f0 _
or.<= 2p(k_ + k22)/zr [FI cosh 2_kl(h - y)cos ,_k2(h - y)

+ F2 sinh Ski (h - y) sin Xk2(h - y)] sin _ cos Lr dX/A (26)

FI = k2 sinh Akt h cos _k2h - kl cosh Akl h sin/_k,_h

F2 = k2 cosh 2_kIh sin Ak2h + k I sinh Akl h cos 7_k2h

O'y = 2p/;,r {k2 [sinh )kkl h cos _k2y cosh Akt (h - y)

- sin Ak2h sinh Akl y sin Ak2(h - y)] + kl [sin 7_k2h cosh Akl y cos Ak2(h - y)

+ sinh Akl h sin Ak2y sinh Akl (h - y)]} sin _, cos )_x dA/A

f0'Txy = 2p(k_ -'['- k2)/7_ [sinh Akth sin ,_kzy cosh Akl (h - y)

- sin ,_k2h sinh Akly cos Ak2(h - y)] sin 7_sin Ax d_/A

where

(27)

(28)

A = 7_(kz sinh 7_klh cosh ?_k_h + kt sin 2_k2h cos _k2h) (29)

On the supported edge y = h, the nonzero stresses are

f0ff_(x, h) = 2p(k_ + k2)/rr [k2 sinh ?_k_h cos 7_k2h

- k_ cosh _k_h sin 7_kEh] sin A cos _x dT_/A (30)

f0_y(X, h) = 2p/_r [k2 sinh 7_kth cos 7_k2h

+k_ cosh _k_h sin ?,k2h] sin 7_cos 7kxd3,/A (31)

Solution for isotropic material

The details of the solution are presented in the Appendix. The formulas for the stresses
at any point in the strip are

f0_r_ = 2p/zr [sinh _y + sinh 7_(2h - y) - 7_(2h - y) cosh _y

- _y cosh ?_(2h - y)] sin _ cos Xx dT_/A (32)

f0_y = 2p/rr [sinh Ay + sinh 7_(2h - y) + ?_(2h - y) cosh Ay

+ ?_y cosh _(2h - y)] sin ?_cos _x d_/A (33)

f0"rxy = 2p/zr [7_ysinh?_(2h - y) - ?_(2h - y)sinhT_y]sinT_sinXxd_/A (34)
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A = ?_(sinh 27_h + 2Ah)

On the supported edge y = h, the nonzero stresses are

f0_ffx(y,h) = 4p/zr [sinh?_h - ?_hcosh,_h]sinXcos2_xd?_/A

foCry(x, h) = 4p/rc [sinh ?_h+ 2_hcosh ?_h]sin ;kcos hx dT_/A

and

Problem B--Fixed upper edge

The boundary conditions are

"rxy(X, 0) = 0

.x.0,__{: 1
u(x, h) = 0

v(x, h) = 0

In terms of qgc, the transformed boundary conditions are

qgC,y(_, O) = 0

/5-/sin_,_
_oc(_,o)=-PV;U_-)=--:a)

qgc.yy(A, h) + )_2q_yqgc(_ , h) = 0

and

159

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(46)

q)C.vyv()k,h)-k-_2( Ex )• " rlxy Gxy qOC,y(?_,h) = 0 (45)

Solution for type I material

The use of Eq. (18) in conjunction with Eqs. (42)-(45) yields a set of simultaneous

equations which is solved for A, B, C, and D. These are used along with Eqs. (18) and

(8)-(10) to obtain the expressions for the stresses at any point in the strip:

f0ft., = 2pktk2/rr {(g_.,2_ rl2)(k_ cosh Ak, y + k2 cosh _k,:,y)

+ (_ + rl)2[kj k2 sinh 2_k,.h sinh 3,k_ (h - y) - k_ cosh Akt h cosh _k2(h - y)]

+ (& - q)2[k_k2 sinh Akth sinh ;_k2(h - y) - k_ cosh 2_k2h cosh 2_k_(h - y)] ]

sin ;_ cos K,c d3,/A
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f0 '3°
_r = 2p/rr {klk2[(£,-q)2 cosh)_k2hcosh3,kj(h - y)

+ (£, + 11)2cosh )_kl h cosh )_kz(h - y) - (e - q)(cosh ?_kly + cosh )_k2y)]

- k_(e - rl) 2 sinh )_klh sinh )_k2(h - y) - k2(& + 11)zsinh 3,k2h sinh ?_kl(h - y) }

x sin )_ cos )_x d_/A (47)

"r_y = 2pklka/Tr {(_2 _ 112)(kl sinh_kty + k: sinh 2_k2y)

+ kt(L - rl)2[cosh 2_k2h sinh Xkl(h - y) - sinh ;_klh cosh _k2(h - y)]

Jr k2(_ Jr q)2[cosh _kl h sinh Xk2(h - y) - sinh Xk2h cosh Xkt (h - Y)I}

sin X sin Xx dX/A (48)

where

& = 1/2(k_ + k2 + 2Vxy) rl = 1/2(k_- k2) (49)

A = 7k{2klk2[(& 2 4- 112)cosh)_kth cosh _k2h - ([_2 _ 112)]

- [k_(L - r]) 2 + k2_(L + 11)2] sinh)_klh sinh)_k2h} (50)

Along the fixed edge y = h, the formulas simplify to

t7x (X, h) _" qxy Gy(X, h) (as required by the fixed-edge condition) (51)

6ffy(x,h) = 4pktk211/ [(L +11)cosh_klh-(L-11)cosh;_k2hlsin2_cos_x d2_/A (52)

/7%y(X, h) = 4pklk211/_ [k_(_:,-11)sinh2_k_h-k2(& +rl)sinh;\k2hl

sin X sin Xx dX/A (53)

Solution for type III material

Substitution of Eq. (25) into the transformed boundary conditions (42)-(45) produces
a set of simultaneous equations which are solved for A, B, C, and D. Substitution of their

values into Eq. (25) and subsequent use of Eqs. (8)--(10) yields for the stresses,

ff_ = 23'_p/_r Re[g_T 2cosh 2Wy + "y'yg--_ sinh X_'h sinh Xy(h - y)

- T2_ 2cosh X_'h cosh XT(h - y)] sin X cos Xx d2_/A (54)

fly = 2p/rr Re[y_g 2cosh ;_Th cosh Jk_(h - y) - g_ cosh 2Wy

_ y2_2 sinh X'yh sinh _,'_(h - y)] sin X cos _ dX/A (55)

"r_y = 2_p/_ Re[y_ 2cosh 3,_h sinh _y(h - y) + Yg_ sinh ;_YY

- y_ 2 sinh Xyh cosh _,(h - Y)I sin 2, sin K_:d,_/A (56)

where again 3*= k_ + ik2, 5, = k_ - ik2, and g = 3,2 + 11xy. f; = 5,2 + Vxy,
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Re{z} indicates the real part of the complex number z, and

= ?qy_[Re(g 2) cosh ?`yh cosh ?`_h - g_] - ReU/2g 2) sinh ?`yh sinh ?`"_h}
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or, in explicitly real terms,

2

=?`((k_+k_)[4k_k_- (k_ -k_+qxy ) ](sinh2?`kth+cos2?`k2h)

2 _ " 2 4k_k_] {(k_-k_)[(k[-k_+qxy) _ _ 2+(k_ +k2)[(k_ k2 +_xy) + +__ " , , , 4k[k2]

2
+8k[k2(k [ -k_+qxy)}(sinh2?`klh+sinZ?`kzh)) (57)

On the fixed edge y = h, the expressions for the stresses become

crx(x, h) = rlxy_y(X, h) (as required by the fixed-edge condition) (58)

Cry(x, h) = 8ktk2(k_ + k_)p/Tx [2klkz cosh ?`kth cos ?`k2h

+(k_ -k_+rl_r) sinh?`klhsin?`k2h] sin ?,cos Xx d?`/_. (59)

and

f0 °C
"T'xy(X , h) = 8ktk2(k_ + k_)p/rt [k, (k_ + kz + _xy)cosh Xklh sin ?`k2h

- k2(k_ + k2 - P-xy) sinh ?`klh cos ?`k2h] sin ?`sin hx d?`/_x (60)

Solution for isotropic material

The details of the solution are presented in the Appendix. The formulas for the stresses

at any point in the strip are

_x = 2p/r_ {(3 - v) sinh ?`h[sinh ?`(h - y) - ?`y cosh ?`(h - y)]

+ [411/(1 + q) - (1 + n)?`2h(h - Y)I cosh ?`y

+ [(1 + rl)?`h + 27`y] sinh ?`y} sin ?`cos 7_xd;_/A (61)

f0Cry = 2p/rr {(3 - tl) sinh ?`h(sinh ?`(h - y) + _y cosh ?`(h - y))

+ [( 1 + rl)?`2h(h - y) + 4/(1 + 1"1)]cosh ?`y

+ [(1 + q)?`h - 27`y] sinh ?`y} sin ?`cos Xx d?`/A (62)

"rxy = 2p/_ {(3 -- rl)?`y sinh ?`h sinh ?`(h - y) + 27`y cosb ?`y

-[2(1 - q)/(1 +n) +(1 + rl)_,2h(h -y)]}sin?`sinXxd?`/A (63)

where

A = ?,[(3- rl) sinh2 ?`h +(1 + rl)?`2h 2 +4/(1 +rl)] (64)
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On the fixed edge y = h,

ox(x, h) = rl_r_.(x, h) (as required by the fixed-edge condition) (65)

o'v(.r, h) = 2p/_ [2Xh sinh2Xh +4/(! + rl)cosh22_h] sinXcosXxdX/A (66)

I""rxv(x,h)=4p/g [XhcoshXh-(l-l"l)/(l+q)sinhXh]sinXsin'_dX/A (67)

Half-plane solutions

The equations governing the behavior of the orthotropic half-plane are those for the

corresponding strip, except that the conditions on the edge y = h are replaced by the re-

quirement that the stresses vanish for x 2 + y2 .__, _c in the upper half-plane. The Fourier
sine and cosine transforms can again be usefully employed.

Solution for type I material
Because of the requirement that the stresses vanish for x 2 + y2 _ oc, Eq. (18) can be

replaced by

qgc(?,, y) = A(7_)exp(-?_kly) + B(A)exp(-Ak2y) (68)

Satisfaction of the two transformed boundary conditions, Eqs. (12) and (13), leads to

qOc(_, y) = f(_)/(kl - k2)[k2 exp(-Xkly) -- kt exp(-J_k2y)]

Then, the use of Eqs. (8)-(10) gives

fo c
ex = 2pkl k2/[rt(ki - k2)] [kl exp(--Nkl y) -- k2 exp(-7_k2y)] sin 7_cos Xx dTk/7_

ey = 2p/[n(k_ - k2)] [k_ exp(-Xk2y) - k2 exp(-Xk_ y)l sin X cos Xx dX/X

ff"r._>.= 2pk_k2/[_(k_ - k2)] [exp(-Xk2y) - exp(-Xk_y)] sinXsinK_ dX/X

All integrals can be evaluated in closed form [4]. The results are

ff_ = 2pkikz/[rt(k_ - k_,)](k, {1/2 Arctan[2k,y/(k_Y 2 + x2 - 1)] + Strt/2}

_k2{1/ZArctan[Zk2y/(k2y 2 + x' - 1)] + S2rt/2}) (69)

Cry = 2p/[zt(k, - k2)](k, {1/2 Arctan[2k,_y/(k__y _-+ x 2 - 1)] + $27x/2}

-k2{l/ZArctan[Zk_y/(k_Y 2 + x 2 - 1)] + S_rt/2}) (70)

"_xy = pk_kz/[2rt(kt - k,.)l(ln{[k_y: + (x + l)'-]/[k_y" + (x - 1)"]}

- ln{[k_y 2 +(x + l)2]/[k_y 2 +(x- 1)z]}) (71)
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where

{l k2y2+x2-1 <0} and $2= { 1 k_'y2+x2-1 <0}SI = 0 k_y 2+x 2 1 >_0 0 k2Y 2+x 2 1_0 (72)

and kt and k 2 are the type I characteristic values defined earlier.

Solution for type lIl material
For this material, after enforcement of the requirement that all stresses vanish for

x z + y2 ._+ oc in the upper half-plane, the transformed stress function takes the form

qgc(?,, y) = A(?,) exp[-?,(kt + ik2)y] + B(?,) exp[--?x(kl - ikz)y] (73)

Satisfaction of the two transformed boundary conditions yields

qOc(?,, y) = -f(7_) exp(-J_kl y)[cos 7_k2y + (kl/k2) sin 7tk2y] (74)

Then the use of Eqs. (8)-(10) gives

ff_ = -2p(k_ +k_)/rt [(k,/k2)sin_k2y -coSXkEy]exp(-Xkly)sinJ_cosXxdX/X

/7cry = 2p/rt [(kt/k2)sinXk2y +cosXk2ylexp(-;_kly)sinXcos_xd2_/X

"rxy = 2p(k_ + k_)/(Tr.kz) exp(-Xkty)sinXk2ysinAsinXxdX/X

Again, all integrals can be evaluated in closed form [4]. The results are

_x = -p(k_ + k_)/rt[(k,/4kz)(ln{[k_y 2 + (1 + k2y + x)Z]/[k_y 2 + (1 -k2y - x)2]}

+ln{[k_y z + (1 +k2y- x)Z]/[k_y 2 +(1 - k2y +x)2]})

- 1/2Arctan{2kty/[k_y 2 - 1 + (k2y + x)2]} - SlTx/2

- 1/2Arctan{2kty/[kZy z - 1 + (k2y - x)Z]} - $27x/2] (75)

_y = p/Tx[(kt/4k2)(ln{[k_y 2 + (1 + k2y + x)Z]/[k_Y 2 + (1 - k2y - x)2]}

+ In{ [k_y'- + (1 + k2y - x)2]/[k_y z + (1 - k2y + x)2] })

+ 1/2Arctan{2kty/[k_y z - 1 + (k2y + x)2]} + Sift/2

+ 1/2 Arctan{2kty/[k_y 2 - 1 + (kzy - x)Z]} + S2rt/2] (76)

where

{lS1 = 0
k_y 2 -1+ (k2y + x) z <01

k_y 2 1 + (k2y + x) 2 _> 0 I { 22 }
1 k ly - 1 +(kzy-x) 2 <0

$2 = 0 k_y 2 1 + (k2y x) 2 > 0

(77)

and

"rxy = p(k_ + k_)/(27rkz){Arctan[(k2y + x - l)/(kly)] + Arctan[(kzy -x + l)/(kty)]

- Arctan[(k,y + x + l)/(kly)] - Arctan[(kzy - x - l)/(kty)]} (78)
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Solution for isotropic material

This solution is readily available in the literature [51. The stresses are

cr_ = (p/TT){Arctan[y/(x - 1)] - Arctan[y/(x + I)]

+2y(x 2 _ y2 _ iV[(x 2 + y2 _ 1)2 + 4y2]}

cry = (p/Tt){Arctan[y/(x - 1)1 - Arctan[y/(x + 1)1

_ 2y(x 2 _ y2 _ ll/[[x-' + y2 _ 1)2 + 4y2]}

%y = (p/zt){4xy2/[(x: + y-" _ I) 2 + 4y21}

where the Arctan functions have the range [0. rt].

(79)

(80)

(81)

RESULTS AND DISCUSSION

In order to generate illustrative numerical and graphical results for stresses in some

specially orthotropic configurations, a standard laminate analysis routine was used to

compute equivalent orthotropic-sheet properties for a wide variety of symmetric angle-

ply laminates in which each graphite-epoxy lamina had the following properties: EL =
128 GPa, Er = 11.0 GPa, rlLr= 0.35, and Gt.r = 5.74 GPa, where subscripts L and T

denote longitudinal and transverse directions relative to the fibers. Table 1 contains a list of

20 balanced and symmetric 24-ply laminates along with their equivalent orthotropic pro-
perties, their corresponding characteristic values, and their designation as type I, type III,

or the one quasi-isotropic type II. Ply angles are measured from the positive x axis.

Table 1

Elastic constants and characteristic values of various laminates (moduli given in GPa)

Laminate Ex(10 -6 ) Ey(10 -6 ) fix _. Gxy(lO 6) Type kl k2

[0]2 4 128 11.0 0.350 5.74 I 4.58 0.742

[+516s 125 11.0 0.421 6.56 I 4.19 0.803

[-b I016s 118 11.1 0.617 8.96 I 3.31 0.983

[+ 1516s 105 11.2 0.879 12.5 I 2.12 1.44
[+2016s 86.9 11.4 1.11 17.0 III 1.45 0.813

[±2516s 67.2 11.8 1.24 21.8 III 1.16 1.02

[±3016s 49.4 12.5 1.21 26.3 III 0.924 1.06

[4-3516s 35.5 13.9 1.09 29.9 III 0.745 1.02

[±4016s 26.0 16.1 0.913 32.3 III 0.616 0.944

[±4516s 19.9 19.9 0.731 33.1 III 0.534 0.846

[±5016s 16.1 26.0 0.565 32.3 III 0.485 0.743

[±5516s 13.9 35.5 0.425 29.9 III 0.465 0.639

[±6016s 12.5 49.4 0.309 26.3 III 0.467 0.536

[±6516s 11.8 67.2 0.217 21.8 III 0.487 0.427

[±7016s 11.4 86.9 0.146 17.0 III 0.525 0.294

[±7516s ! ! .2 105 0.094 12.5 I 0.472 0.694

[±8016s 11.1 118 0.058 8.96 I 0.302 1.02

[±8516s 11.0 125 0.037 6.56 I 0.239 1.25
[90]24 11.0 128 0.030 5.74 I 0.218 1.35

Isotropic 50.9 50.9 0.312 19.4 II ! 1
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In the numerical computation of stresses from either improper integrals or closed-
form solutions, and in the graphical representation of the results, extensive use was made

of Mathematica a'M software [6]. Since all of the improper integrals in problems A and B

required numerical integration, considerable experimentation was performed to establish a
practical upper limit in place ofA = c_. An upper integration limit of?, = 20 was found to
be more than sufficient in all cases examined.

The closed forms of the solutions to the orthotropic and isotropic half-plane problems
make it convenient and, it is hoped, instructive to present some half-plane results in advance
of results for the strips.

Half-plane constant-stress contours

To illustrate some of the effects that material properties can have on load diffusion

rates and patterns, contour plots for the normalized stresses err� p and "r_v/p are pre-

sented in Figures 1 and 2, respectively, for the isotropic half-plane and for orthotropic
half-planes which correspond to the following seven laminates: [0]2.,, [+ 1516s, [4-3016s,

[-4-4516s, [+6016s, [-k-7516s, and [90]_,4. To aid in making direct comparisons, all plots have

been generated for the same square region defined by {-6 < x < 6, 0 < y < 12}.

Figure 1, which contains the five level curves ffy/p = 0.9, 0.7, 0.5, 0.3, and 0.1 for

each of the eight laminates, shows clearly that diffusion of the external loading into the

half-plane is strongly influenced by laminate properties. For example, the maximum depth
(i.e., distance, normalized by the width of the loaded region, from the edge y = 0) at which

Cry/p persists at the 10% level varies from about 6 for the [+3016s laminate to very much

more than 12 for the [90]24 laminate. The corresponding depth for the isotropic laminate
lies well within these extremes.

In addition, among the eight laminates there are large differences in the shapes of

corresponding constant-o'y/p contours, especially for the lower levels of (7y/p. In fact,

contours for the intermediate-ply-angle laminates, i.e., those composed of -1-30°, -I-45 °,

and +60 ° plies, exhibit a fundamental shape change as lyy/p becomes small. For large

values of ffy/p the contours display an absolute maximum along the y axis, their axis of

symmetry, whereas for small values of tYy/p they develop a relative minimum there. This

behavior is consistent with the fact that the intermediate-angle-ply laminates have preferred
directions of load propagation that are oblique to the direction of loading (90°), a feature

that is especially evident in the [-1-4516s laminate (Figure le).

Before contour plots of normalized shear stress, "rxy/P , for the eight laminates were

generated, ranges for "rxy/p had to be established. This was done by examining the limiting
behavior of 'rx> in the neighborhood of (x, y) = (I, 0), a point of discontinuity of the

edge loading, where the shear stress has an extreme value. For Tmax = limy_0 "[xy(1, y), the
following expressions were obtained:

"r ftl&x./p

klk2 kl

rc(kx - k2) log k"-_ (type I)
2

k n + k.2 Arctan k2 (type III)
7rk_ kl

1
- (isotropic)
7_

Upon appropriate passage to the limit, the type I and type III expressions reduce to the

isotropic result• Numerical values of the maximum shear stresses in the eight featured

.. . .
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laminates are as follows:

W. B. Fichter

Laminate Tmax/p

Isotropic 0.318

[0]24 0.513

[-t- 1516s 0.553

[+3016s 0.507

[-1-4516s 0.379

[-4-6016s 0.256

[4-7516s 0.181

[90]24 0.151

12

10

8

6

\ , x

4

2

0!, x

-6 -4 -2 0 2 4 6

a) Isotrop_c

10 , x

; b

2

0 ,

-6 -4 -2 0 2 4 6

c) [¢1516=

12

10

8

6

_,x

a
=,

4

2

O,

_ -2 0 2 4 6

b)[0124

4

2

0

-6

12

10

(_'Y = .1
P

-,4 -2 0 2 4

d) [±30le,,

Figure 1. Constant-Gy plots for eight different laminates. (Continued)
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Figure 1. Constant-try plots for eight different laminates. (Continued).
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In Figure 2, level curves are shown for "rxy/p = -t-0.05 and for equal increments of
maximum

-t-0.05 to the { minimum } value, for which a level curve for "cxr/P could be generated. Hence,
the number of curves shown for a laminate is indicative of the severity of the shear stress

field in that laminate. Also, there is positive correlation between the severity of the shear

stress field and the rate of decay of the direct stress due to the normal loading. For example,

in the [+1516s laminate the high shear stresses (Figure 2c) are consistent with the highly

compact try field (Figure lc). Similarly, in the [90]24 laminate the benign shear stress field

(Figure 2h) correlates with the gradual decay of O'y (Figure lh).
These stress contour plots for the half-plane have been presented for two reasons. First

the relatively simple closed-form solutions for the half-plane lend themselves to economical
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l_'igure 2. Constant-rxy plots for eight different laminates. (Continued)

:,,ntour-plot generation, while the strip solutions, in their somewhat involved improper

ntegral forms, do not. Second, although the stress contour plots for the half-plane cannot

x" expected to mirror exactly the behavior of the elastic strips, the results may be helpful
, visualizing the corresponding responses of the strips, if proper account can be taken of

-ffects of the support conditions along the edge y = h. Information from the half-plane

,olutions that might be useful in this regard is Ya, the 90% decay distance for a,., which

:s defined here as the minimum (normalized) distance from the loaded edge for which

._,tx, Ya)/P < 0.1 for all x.
To find Ya for most of the laminates, it sufficed to examine (rv only along the y axis

._ause every level curve for Cry has a maximum there. However, as was noted earlier,

:or the [+3016s and [-4-6016s laminates, and presumably for all balanced angle-ply lam-
nares between these, the level curves crv/p = 0.1 exhibit a relative minimum on the
, axis. Thus, for those laminates the Crv/p = 0.1 level curves had to be examined fur-

3aer to find the correct value of ya. For the 20 laminates studied here, the values of Ya
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ranged from 6.05 to 33.7. These 90% decay distances for the half-planes are presented
and discussed in more detail in connection with corresponding results for the elastic

strips.

Strip widths that ensure 90% decay

A question that arises is whether the relatively convenient solutions for the half-plane
can be useful in the design of similarly loaded strips. A partial answer might be obtained by

finding whether there is correlation between the 90% decay distances for the half-planes,

yd, and the minimum strip width required to ensure 90% decay of cry across the strip. To
this end, the formulas for cry(x, h) given by Eqs. (24), (31), (37), (52), (59), and (66) were

used to find ha, the minimum value ofh for which cry(x, h)/p <_0.1 for all x. The process,

which involved calculating cry(X, h) in each laminate for numerous values of h, yielded
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Table 2

Comparisons of yd with minimum strip widths that

ensure 90% decay tIf O'y

Laminate Yd, Half-Plane ha, Strip A h a, Strip B

[0124 9.91 15.0 14.6

[+516s 9.39 14. ! 13.6

[+I0]6S 8.35 12.4 11.6

[±1516s 7.39 10.7 9.54

[q-20]6s 6.66 9.42 7.74

[q-2516s 6.18 8.48 6.37

[+3016s 6.05 8.21 6.49

[+3516s 6.51 8.98 7.43

[-'t"4016S 7.30 10.2 8.70

[-4-4516s 8.25 11.6 9.96
[+5016s 9.27 ! 3.0 11.1

[+5516s 10.4 14.4 11.9

[-1"6016S 12.0 16.2 12.8
[-/-6516S 14.8 20.3 15.2

[-/'- 7016S 18.4 26.0 21.4

[+7516S 22.6 32.7 29.1

[+8016S 27.2 40.3 37.8

[+8516S 31.5 47.4 45.7

[90]24 33.7 50.9 49.5

Isotropic 12.7 18.3 16.2

the values listed in Table 2, which also contains the values of va for the corresponding
half-planes.

As was the case with some of the type III half-planes, the normal stress av(x, ha) on

the supported edge of some type III strips has a relative minimum on its axis ofsymmetry,
which is the y axis. An obvious conclusion from Table 2 is that, for either strip problem,

the values of ha, the minimum strip width required to ensure 90% decay of cry, are greater

than the corresponding values of Yd, the 90% decay distance in the half-plane. For the strip

with the partially fixed edge (problem A), the ratio hd/Ya varies only moderately among

the laminates, from a low of 1.35 for the [+6016s laminate to a high of 1.51 for the [0]24

and [9012,| laminates. Thus, the use of a single ha/Yd ratio of about 1.5 for the purpose

of designing a specially orthotropic strip on the basis of the half-plane solution appears
reasonable.

For the strip with the fixed edge (problem B), however, the range of ha/yd is consid-

erably broader, from a low of 1.03 for the [-t-2516s laminate to a high of 1.47 for the [0]24
and [90]24 laminates, with most values of hd/ya falling below 1.30. Thus, a single value

for hd/yd of about 1.5 would again serve as an effective upper bound on the panel width

required to ensure 90% decay of Cry.However, because of the larger spread in ha/yd, this
approach could, for some laminates, lead to wider than necessary strips. Also, in the case

of the fixed-edge strip, Table 2 indicates a strong interaction between the intermediate-ply
angles and the restraint against tangential displacement along the supported edge, which
can result in substantial shear stresses there.



10

.08

0_

P
.04

.O2

Figure 3.

Transverse Stress Decay in a Specially Orthotropic Strip

"_xy= v= 0

h _Y lt -1 ! t
,:I _x

-_lsotropic, h d = 18.3 .10

[±151s=, h o = 10.7

{±75]_, h o = 32.7 .08

' = " P .04

.02
0

5 10 15 20_ x -.02

x

a) Isotroplc and four type-I laminates

Graphs of cry(x, hd)/p for eight laminates (problem A).

/[,±301_, h_ = 8.21

"-- I [---601_. h,_ = 16.2

-- ± , = .

171

x

b) Three P/pe-III laminates.

Normal stress on the supported edge

To illustrate the variety of normal stress distributions that occur along the supported

edge in response to the localized uniform loading on the opposite edge, cry(x, ha)/p is

plotted as a function of x in Figure 3 for problem A (partially fixed edge) and in Figure 4

for problem B (fixed edge), for the same eight laminates featured earlier. It is worth noting

that identity holds between the graphs of _y(X, ha)/p for the following laminate pairs: [0]24
and [90]24, [+1516S and [+7516s, and [:E3016s and [-1-6016s. These identities result from

a reciprocal relationship that exists between characteristic values of these pair members

because one pair member is the 90 ° rotation of the other. Note, however, that although the

graphs of O'y on the supported edge of these reciprocal pairs are identical (except for possible
minuscule differences due to numerical roundoff), they apply to very different strip widths.
Incidentally, the reason for the rather remarkable near-identity in both problems between

the graphs of Cry(X. hd)/p for the isotropic material and for the reciprocal pair [+ 1516s and
[+7516 s is not apparent to the author.

Figures 3a and 4a show that graphs of _rv(x , hd)/p for the isotropic and type I materials

differ little, either qualitatively or quantitatively, between problem A and problem B. Figures

3b and 4b show that graphs of _y(X, hd)/p for the type III materials are also qualitatively
similar in problems A and B; however, their relative minima on their line of symmetry are
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more pronounced in problem B, due primarily to the tangential restraint along the edge
y = ha. In any event, if a design requirement is at least 90% decay of cry.across the strip,

then for a large number of angle-ply laminates, Table 2 identifies the minimum width needed

to satisfy that requirement.
In the case of problem B, however, there is the possibility of significant shear stresses

on the fixed edge y = ha. With that possibility in mind. shear stresses along y = ha were

calculated using Eqs. (53), (60), and (67) for type I, type III. and isotropic material, respec-

tively. Significant shear stresses (defined here as satisfying "r_/p >_0.1) on the edge y = ha

were not found in any of the isotropic or type I materials studied. In the type III materials,

however, shear stresses that meet the significance criterion were present in the following
five laminates: [+2516s, [4-3016s. [+3516s, [+4016s, and [--I-4516s. Plots of'r_(x, h,D/p for

these five laminates are shown in Figure 5. By a slight margin, maximum shear stresses on

the supported edge are greatest in the [-F30]6s and [4-3516s laminates. If shear stresses of

this magnitude are of little concern, then the list of ha values given in Table 2 should suffice

as minimum panel widths for design purposes. On the other hand, if these shear stresses are

unacceptably large, then Eq. (60) can be used along with appropriate numerical integration

tools to determine new, greater panel widths that ensure sufficient decay of both Cryand "rxy.
In the case of the [-F30]6s laminate, for example, this augmented criterion would require

that the minimum strip width be increased from 6.49 to 7.61.

In the case of problem B, an additional potential complication exists. As a result of

the fixed boundary condition, the relation cr_ =rl_y holds everywhere along the edge
y =h, so that in the small group of laminates for which q_,. > 1 (see Table 1), it follows

that o-x > o-y there. Thus, if the 90% decay criterion were to be applied to cr_ as well as

to crr, then for rlxy > 1 the condition cr,(x, hd)/p < 0.1 would have to be replaced by the

condition rl_y Cry(x, ha)/p < 0.1, which would result in greater minimum strip widths for a
few laminates.

A trend that might, upon first consideration, appear to be counterintuitive can be seen in
Table 2. Note that for every laminate the strip width that ensures 90% decay of cry(x, ha)/p

is greater in problem A (partially clamped edge) than in problem B (clamped edge). This
condition is equivalent to the following: for identical laminates of equal strip width, the

normal boundary stress that reacts the applied edge loading, i.e., Cry(X. h), has a greater

maximum value on the partially fixed edge than on the "'stiffer" fully fixed edge. Such a trend

runs counter to the popular adage that stiffer boundaries, by offering greater resistance, incur
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Figure 6. Shear stress contour plots for the isotropic cases of problems A and B with h = 5.

greater stress. This apparent anomaly can be resolved by referring to Figures 6a and 6b,

which contain shear stress contour plots for the isotropic cases of problems A and B,

respectively, with normalized strip width arbitrarily taken as 5. (The same point can also

be illustrated with any of the other laminates and any small-to-moderate strip width.) Note

the considerably greater extent of the shear stress field in problem B, as well as the nonzero

shear stress distribution on the fixed edge in problem B. At all points on the partially fixed

edge of problem A, of course, shear stress is required to be zero. In effect, the restraint

against tangential displacement along the fixed edge gives rise to the more extensive shear

stress field by which the broader diffusion of the applied normal load is accomplished.

A consequence of this broader diffusion of try is lower maximum normal stress on the

supported edge. In other words, by promoting greater diffusion of cry, the fixed boundary

can be said to react the applied load more efficiently than does the partially fixed boundary.

CONCLUDING REMARKS

Solutions in the form of improper integrals have been presented for the stresses in a

specially orthotropic infinite strip with one edge partially fixed or completely fixed while

the other edge is subjected to localized uniform normal loading. In addition, closed-form

solutions for the stresses in a similarly loaded specially orthotropic half-plane are obtained.

The results are used to generate illustrative contour plots of the direct stress and the shear

stress in various half-planes, and to determine minimum strip widths required to ensure

90% decay of stress across the strip.

While the graphical and tabular results presented are for specific laminated composite

materials, the formulas for the solutions can be used to calculate the stresses in any similarly

loaded specially orthotropic laminated strip or half-plane whenever its elastic constants are

known.
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APPENDIX: SOLUTIONS FOR ISOTROPIC STRIP PROBLEMS

The method of solution for the isotropic strip problems is identical to that for the

orthotropic strip problems; however, in the isotropic case the algebra is somewhat simpler.

For isotropic material, Eqs. (1) become

o-x (Yr. (7_ Txy

q--_ av = rl--_ Y_ = u,y + rl, x = _ (AI)_, = u,, E " E -

Equations (2) still give the stresses in terms of the Airy stress function; however, Eq. (3)

simplifies to

q) ........ _ + 2_.xxyy -'l- _.yyyy = 0 (A2)

Fourier transforms [see Eqs. (8) and (9)] are again employed. Equation (10) becomes

lYxC : qgC,yy (YyC : --_2q)C

Us = (1/AE)(qgc.yy + rlAZqgc)

%yS = Xqgc.y

vc = (1/_2 E)(q_c,yyy - (2 + q)._2qgC.y )
(A3)

and transformation of Eq. (A2) gives

_Oc.yyyy - 2_2_OC.yy --b _4q9c = 0

For both strip problems, the transformed stress function has the form

(A4)

qgc(_,, y) = [A(_) + yB(A)] cosh Ay + [C(A) + yD(_,)] sirda Ay (A5)

Problem A: Partially ftred upper edge

The transformed boundary conditions are given by Eqs. (12)-(15)• Substitution of

Eq. (A5) into the transformed boundary conditions leads to four simultaneous equations
which have the solution

A = -f(_k)

B = -2_2f(A) sinh 2 _h/A

C = 27_f(?_) sinh 2 Ah/A

D = 2A2f(A) sinh Ah cosh ?_h/A

(A6)

where

A = 7_(sinh 22_h + 2Ah}
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Substitution of Eq. (A6) into Eq. (A5), followed by use of the first three of Eq. (10) and
Fourier inversion, leads to the stress formulas given by Eqs. (32)-437).

Problem B." Fixed upper edge

The transformed boundary conditions are given by Eqs. (52)-(55). Substitu-

tion of Eq. (A5) into Eqs. (52)-(55) leads to simultaneous equations which have the
solution

A = -f(A)

B = -),f(Yk)[(3 - rl) sinh ),h cosh ),h - (1 + q)Ah]/D

C = Af(A)[(3 - rl) sinh Ah cosh Ah - (I + q)Ah]/D

D = Af(A)[(3 - r]) sinh 2 Ah + 2]/D (A7)

where

D = l[(3 - n) sinh 2 lh + (1 + n)12h 2 + 4/(I + n)]

Substitution ofEq. (A7) into Eq. (A5), use of the first three ofEq. (10) and Fourier inversion
yield the stress formulas given by Eqs. (61)-(67).


